Undergraduate
Faculty of Engineering and Architecture
Electrical and Electronics Engineering
Anlık RSS Bilgilendirmesi İçin Tıklayınız.Düzenli bilgilendirme E-Postaları almak için listemize kaydolabilirsiniz.


Course CodeSemester Course Name LE/RC/LA Course Type Language of Instruction ECTS
//
Course Goals
To teach basic concepts of linear algebra for engineering students.
Prerequisite(s)
Corequisite(s)
Special Requisite(s)
Instructor(s)
Course Assistant(s)
Schedule
Office Hour(s)
Teaching Methods and Techniques
Principle Sources
Other Sources
Course Schedules
Week Contents Learning Methods
1. Week Introduction to Matrix Algebra; Addition and Multiplication in Matrices Oral presentation, practise
2. Week Some Special Matrices; The Transpose of a Square Matrix; Applications Oral presentation, practise
3. Week Determinants and Properties; Laplace Expansion Application of Determinants Oral presentation, practise
4. Week Application of Determinants Oral presentation, practise
5. Week The Rank of a Matrix and Equivalent Matrices; Adjoint Matrix; Inverse of a Matrix Oral presentation, practise
6. Week Midterm I
7. Week The Solution Methods of The Systems of Linear Equations Oral presentation, practise
8. Week Vectors Oral presentation, practise
9. Week Applications of Vectors Oral presentation, practise
10. Week Linear Dependence and Linear Independence Oral presentation, practise
11. Week Applications of Linear Dependence and Linear Independence Oral presentation, practise
12. Week Midterm II
13. Week Eigenvalues and Eigenvectors of a Matrix; Cayley-Hamilton Theorem Oral presentation, practise
14. Week Singular value decomposition and applications Oral presentation, practise
15. Week
16. Week
17. Week
Assessments
Evaluation tools Quantity Weight(%)
Midterm(s) 1 40
Homework / Term Projects / Presentations 2 0
Final Exam 1 60


Program Outcomes
PO-1Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied information in these areas to model and solve engineering problems.
PO-2Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
PO-3Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way so as to meet the desired result; ability to apply modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economic and environmental issues, sustainability, manufacturability, ethics, health, safety issues, and social and political issues according to the nature of the design.)
PO-4Ability to devise, select, and use modern techniques and tools needed for engineering practice; ability to employ information technologies effectively.
PO-5Ability to design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems.
PO-6Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
PO-7Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language.
PO-8Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
PO-9Awareness of professional and ethical responsibility.
PO-10Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
PO-11Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of engineering solutions.
Learning Outcomes
LO-1Recognize special type of matrices and perform the Matrix operations.
LO-2Solve linear systems by Gauss-Jordan reduction.
LO-3Find the transpose, inverse, rank and adjoint of a matrix.
LO-4Calculate determinants using row operations, column operations, and cofactor expansion along any row ( or column).
LO-5Solve linear systems by Cramer’s rule.
LO-6Prove algebraic statements about vector addition, scalar multiplication, linear independence, spanning sets, subspaces, bases, and dimension.
LO-7Calculate eigenvalues and their corresponding eigenvectors of a square matrix.
LO-8Prove the properties of eigenvalues and eigenvectors.
LO-9Determine if a matrix is diagonalizable, and if it is, diagonalize it.
LO-10Prove statements about linear transformations.
Course Assessment Matrix:
Program Outcomes - Learning Outcomes Matrix