Undergraduate
Faculty of Engineering and Architecture
Industrial Engineering
Anlık RSS Bilgilendirmesi İçin Tıklayınız.Düzenli bilgilendirme E-Postaları almak için listemize kaydolabilirsiniz.


Course CodeSemester Course Name LE/RC/LA Course Type Language of Instruction ECTS
//
Course Goals
 This course is designed to examine the analysis and construction of the fundamental methods and structures for non-linear and complex dynamic systems. The course provides analytical tools to treat the subject matter and aims to cover the following material: introductory concepts in dynamic systems; systems thinking; system modeling for analysis and design; solution design; solution implementation.
Prerequisite(s)
Corequisite(s)
Special Requisite(s)
Instructor(s)
Course Assistant(s)
Schedule
Office Hour(s)
Teaching Methods and Techniques
Principle Sources
Other Sources
Course Schedules
Week Contents Learning Methods
1. Week Introduction to Systems Thinking Oral presentation
2. Week Systems Methodology Oral presentation
3. Week Causal Loop Modelling Oral presentation
4. Week Introduction to Stella Oral presentation, Laboratory
5. Week Mathematical Representation of Dynamic Systems Oral presentation, Laboratory
6. Week Mathematical Modelling of Dynamic Systems Oral presentation, Laboratory
7. Week Behavioral Analysis and Evaluation of Mathematical Models Oral presentation, Laboratory
8. Week Midterm Oral presentation, Laboratory
9. Week Generic Flow Processes, S-shaped Growth Structure Oral presentation, Laboratory
10. Week Overshoot and Collapse Structure, Material and Information Delay Oral presentation, Laboratory
11. Week Model Verification and Validation Oral presentation, Laboratory
12. Week Sensitivity Analysis and Policy Design Oral presentation, Laboratory
13. Week Scenario Planning and Modelling Oral presentation, Laboratory
14. Week Project Presentations Oral presentation, Laboratory
15. Week
16. Week
17. Week
Assessments
Evaluation tools Quantity Weight(%)
Midterm(s) 1 30
Homework / Term Projects / Presentations 3 10
Project(s) 1 15
Attendance 14 5
Final Exam 1 40


Program Outcomes
PO-1Ability to apply theoretical and practical knowledge gained by Mathematics, Science and their engineering fields and ability to use their knowledge in solving complex engineering problems.
PO-2Ability of determining, defining, formulating and solving complex engineering problems; for that purpose develop the ability of selecting and implementing suitable models and methods of analysis.
PO-3Ability of designing a complex system, process, device or product under real world constraints and conditions serving certain needs; for this purpose ability of applying modern design techniques
PO-4Ability of selecting and using the modern techniques and devices which are necessary for analyzing and solving complex problems in engineering implementations; ability of efficient usage of information technologies.
PO-5Ability of designing experiments, conducting tests, collecting data and analyzing and interpreting the solutions to investigate of complex engineering problems or discipline-specific research topics.
PO-6Ability of working efficiently in intra-disciplinary and multi-disciplinary teams; individual working ability and habits.
PO-7Ability of verbal and written communication skills; and at least one foreign language skills, ability to write effective reports and understand written reports, ability to prepare design and production reports, ability to make impressive presentation, ability to give and receive clear and understandable instructions
PO-8Awareness of importance of lifelong learning; ability to access data, to follow up the recent innovation in science and technology for continuous self-improvement.
PO-9Conformity to ethical principles; knowledge about occupational and ethical responsibility, and standards used in engineering applications.
PO-10Knowledge about work life implementations such as project management, risk management and change management; awareness about entrepreneurship and innovativeness; knowledge about sustainable development.
PO-11Knowledge about effects of engineering applications on health, environment and security in global and social dimensions, and on the problems of the modern age in engineering; awareness about legal outcomes of engineering solutions.
Learning Outcomes
LO-1I. Understand the concept of systems thinking.
LO-2II. Identify causalities, interdependencies and feedback mechanisms in a dynamic system.
LO-3III. Model non-linear dynamic systems.
LO-4IV. Evaluate and compare dynamic system behavior, generate policies for real life applications
LO-5V. Use Stella as a dynamic system analysis and design tool.
LO-6VI. Solve a real-life problem using dynamic system design method and teamwork; present the results in oral and written form.
Course Assessment Matrix:
Program Outcomes - Learning Outcomes Matrix
 
LO 1
LO 2
LO 3
LO 4
LO 5
LO 6
LO 7
LO 8
LO 9
LO 10
LO 11
LO 12
LO 13
LO 14
LO 15
LO 16
LO 17
LO 18
LO 19
LO 20
LO 21
LO 22
LO 23
LO 24
LO 25
LO 26
LO 27
LO 28
LO 29
LO 30
LO 31
LO 32
LO 33
LO 34
LO 35
LO 36
LO 37
LO 38
LO 39
LO 40
LO 41
LO 42
LO 43
LO 44
LO 45
LO 46
LO 47
LO 48
LO 49
LO 50
LO 51
LO 52
LO 53
LO 54
LO 55
LO 56
LO 57
LO 58
LO 59
LO 60
LO 61
LO 62
LO 63
LO 64
LO 65
LO 66